Perbandingan Analisis Kesalahan Penginputan Speech to Text pada Aplikasi Terjemahan Google Translate dan Baidu Translate
Abstract
Mandarin language learning differs from other languages due to the chinese character and the use of translation apps. The study aims to compare the accuracy of translations between Google Translate and Baidu Translate, using a sample of 100 words from 10 respondents. The results show that the translations are similar, but the pronunciation differs. The study also found that the linguistic and contextual elements used in translation processes can provide a better understanding of the components that influence translation accuracy. This knowledge can help improve translation applications and enhance users' experiences in various situations. The findings can help improve the effectiveness of translation apps in various situations.
Abstrak
Pembelajaran Bahasa Mandarin berbeda dari bahasa lain karena adanya aksara Mandarin dan penggunaan aplikasi terjemahan. Penelitian ini bertujuan untuk membandingkan keakuratan terjemahan antara Google Translate dan Baidu Translate, dengan menggunakan sampel sebanyak 100 kata dari 10 responden. Hasilnya menunjukkan bahwa terjemahannya serupa, namun terdapat perbedaan dalam hal keakuratan pengucapannya. Kajian tersebut juga menemukan bahwa unsur linguistik dan kontekstual yang digunakan dalam proses penerjemahan dapat memberikan pemahaman yang lebih baik mengenai komponen-komponen yang memengaruhi keakuratan penerjemahan. Penelitian ini dapat membantu meningkatkan aplikasi terjemahan dan meningkatkan pengalaman pengguna dalam berbagai konteks situasi serta dapat membantu meningkatkan efektivitas aplikasi terjemahan dalam berbagai situasi.
Keywords
Full Text:
PDFReferences
Arik, S., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., Miller, J., Ng, A., Raiman, J., Sengupta, S., & Shoeybi, M. (2017). Deep voice: Realtime neural text-to-speech. 34th International Conference on Machine Learning, ICML 2017, 1, 264–273. https://doi.org/https://doi.org/10.48550/arXiv.1702.07825
Carlson, R., Granstrom, B., & Hunnicutt, S. (1982). A multi-language text-to-speech module. ICASSP ’82. IEEE International Conference on Acoustics, Speech, and Signal Processing, 7, 1604–1607. https://doi.org/10.1109/ICASSP.1982.1171433
Dan, L. D., Artawa, K., Budiarsa, M., Suastra, I. M., & Septevany, E. (2021). Pronunciation Errors of Indonesian Mandarin Learners. The International Journal of Language and Cultural, 3(1), 66–82. https://doi.org/10.5281/zenodo.49999663
Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-Text and Speech-toSpeech Summarization of Spontaneous Speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401–408. https://doi.org/10.1109/TSA.2004.828699
Handojo, A., Purbowo, A. N., & Budiono, F. V. (2020). Chinese Character Translator on Mobile Phone using Optical Character Recognition and Bing Translator API. Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering, WCSE 2019, 9, 540–544. https://doi.org/10.18178/wcse.2019.06.080
Hasel, C. A. (2022). The Research Comparison Between the Consonants of Bahasa Indonesia and Chinese Mandarin. MANDARINABLE : Journal of Chinese Studies, 1(1), 1–9. https://doi.org/10.20961/mandarinable.v1i1.322
Liang, Z., Quan, X., & Wang, Q. (2023). Disentangled Phonetic Representation for Chinese Spelling Correction. Computational Linguistics, 1(2), 13509–13521. https://doi.org/10.18653/v1/2023.acl-long.755
Liu, S., Yang, T., Yue, T., Zhang, F., & Wang, D. (2021). PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction. ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 2991–3000. https://doi.org/10.18653/v1/2021.acl-long.233
Lu, P. (2023). English Machine translation System Based on Neural Network Algorithm. Proceedings of the 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022), 3, 963–967. https://doi.org/https://doi.org/10.2991/97894-6463-040-4_145
Muzaki, H. & Hakim, C. A. (2022). Pemanfaatan Aplikasi Discord Sebagai Alternatif Pembelajaran BIPA Daring. Estetika: Jurnal Pendidikan Bahasa dan Sastra Indonesia, 4(1), 15–29. https://doi.org/10.36379/estetika.v4i1.231
Nisa, P. P. D. (2019). Application of Mandarin Language Module For Improving Language Speaking Skills. Journal of Applied Studies in Language, 3(2), 178–186. https://doi.org/10.31940/jasl.v3i2.1354
Odinye, S. I. (2017). Mandarin Chinese Pinyin: Pronuncation, Orthography, and Tone. The Creative Artist: A Jurnal of Theatre and Media Studies, 13(2), 1–10.
Prasetyo, D. (2021). Subyektifitas dan Kehidupan Sosial dalam Dunia Digital di China (Memahami Hubungan antar Negara dan Masyarakat pada Era Media Digital). Jurnal Ekonomi Manajemen Sistem Informasi, 3(2), 134–144. https://doi.org/10.31933/jemsi.v3i2.750
Setiawati, E. (2020). Kesalahan Pelafalan Konsonan dan Vokal Bahasa Mandarin dalam Video Chi Olala. Jurnal Pendidikan Bahasa Mandarin UNESA, 3(2), 1–11.
Sugiharto, A. & Anshori, V, W. (2024). Penggunaan Artificial Intelligence dalam Mempersiapkan. Alucia Dei: Jurnal Teologi, 8(2), 1–6. https://doi.org/https://doi.org/10.55962/aluciodei.v8i2.139
Trivedi, A., Pant, N., Shah, P., Sonik, S., & Agrawal, S. (2018). Speech to text and text to speech recognition systems-A review. IOSR Journal of Computer Engineering (IOSR-JCE), 20(2), 36–43. https://doi.org/10.9790/0661-2002013643
Utomo, P. B., Luthfi, I. M., Fu’ad, M. N., & Mujiono, M. (2023). Penerapan Optical Character Recognition (OCR) dengan Text-To-Speech (TTS) dalam Konversi Gambar ke Suara. Voteteknika (Vocational Teknik Elektronika dan Informatika), 11(4), 415. https://doi.org/10.24036/voteteknika.v11i4.125218
Weifen, Q. (2020). Penyebab-Penyebab Kesalahan Penggunaan Kata Bahasa Mandarin: Tinjauan Terhadap Mahasiswa Jurusan Bahasa Mandarin di Indonesia. Linguistika: Buletin Ilmiah Program Magister Linguistik Universitas Udayana, 27(2), 93. https://doi.org/10.24843/ling.2020.v27.i02.p01
Wiratikusuma, F. (2024). Kurikulum Internasional Bahasa Mandarin untuk Penyusunan Buku Ajar. Changlun, 3(1), 67–82. https://doi.org/https://doi.org/10.20884/1.changlun.2024.3.1.12046
Xie, Y., Chen, Y., & Ryder, L. H. (2021). Effects of using mobile-based virtual reality on Chinese L2 students’ oral proficiency. Computer Assisted Language Learning, 34(3), 225–245. https://doi.org/10.1080/09588221.2019.1604551
Xu, H. Da, Li, Z., Zhou, Q., Li, C., Wang, Z., Cao, Y., Huang, H., & Mao, X. L. (2021). Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 1, 716–728. https://doi.org/https://doi.org/10.48550/arXiv.2105.12306
Yan Khiong, B. (2021). Analisis Perbandingan Pola Kalimat Bahasa Mandarin dengan Bahasa Indonesia. Paramasastra, 8(2), 180–186. https://doi.org/10.26740/paramasastra.v8n2.p180-186
Ye, J. (2021). An Analysis of The Advantages and Disadvantages of Multimedia Application in English Translation. Journal of Physics: Conference Series, 1915(4), 1–5. https://doi.org/10.1088/1742-6596/1915/4/042087
Zajdler, E., & Chu, M. (2019). How Polish Students Develop Mandarin Pronunciation through Intensive Training. Applied Linguistics Papers, 26(2), 103–115. https://doi.org/10.32612/uw.25449354.2019.2.pp.103-115
Zhang, X., Yan, H., Sun, Y., & Qiu, X. (2022). SDCL: Self-Distillation Contrastive Learning for Chinese Spell Checking. Computation and Language, 1(4), 1–6. https://doi.org/https://doi.org/10.48550/arXiv.2210.17168
DOI: https://doi.org/10.26499/salingka.v21i1.1080
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Salingka
Salingka publish by Balai Bahasa Provinsi Sumatera Barat - Badan Pengembangan dan Pembinaan Bahasa bekerja sama dengan Perkumpulan Pengelola Jurnal Bahasa, Sastra Indonesia dan Pengajarannya (PPJB-SIP is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Office: Simpang Alai, Cupak Tangah Pauh Limo, Padang 25162,